

Treatment of SCD: Bridging the Gap between Efficacy and Effectiveness

Isaac Odame The Hospital for Sick Children University of Toronto Global Sickle Cell Disease Network

Objectives

· Gain understanding of the current efficacious treatments for SCD

Recognize the key barriers to implementing these efficacious treatments

 Appreciate health systems changes needed to optimize treatment outcomes for SCD

- Penicillin prophylaxis in SCD
 - Oral penicillin reduces incidence pneumococcal sepsis
 - Gaston et al. NEJM 1986:314:1593-99
- · Prophylactic Penicillin Study II
 - Discontinuation of penicillin prophylaxis can be considered at age 5 yrs
 - Falletta et al. J. Pediatr.1995;127:685-90
- · Multicentre Study of Hydroxyurea
 - HU reduces frequency of painful episodes, ACS, transfusions, hospitalizations
 - Charache et al. NEJM.1995;332:317-22

- Preoperative transfusion in SCD
 - Simple Tx to Hb 100 g/L is as effective as exchange Tx to reduce Hb S to 30%
 - Vichinsky et al. NEJM 1995;333:206-13
- Prophylactic transfusion in pregnancy
 - Prophylactic Tx to Hb 100 g/L vs. Tx to Hb < 60 g/L or for emergent situations did not improve obstetric or perinatal outcome
 - Koshy et al. NEJM 1988;319:1447-52

- Stroke prevention in SCD (STOP I)
 - Children at risk of stroke based on abnormal TCD velocity benefit from prophylactic transfusions
 - Adams et al. NEJM 1998;3395-11
- Optimizing primary stroke prevention in SCD (STOP II)
 - Prophylactic transfusions for patients with high-risk TCD cannot be stopped safely at 30 months
 - Adams et al. NEJM 2005;353:5-11

- Hydroxyurea in very young children with SCA: a multicentre, randomized, controlled trial (BABY HUG)
 - On the basis of the safety and efficacy data from this trial, hydroxyurea can now be considered for all very young children with sickle-cell anaemia

Wang et al. The Lancet 2011; 377(9778):1663-1672.

- Stroke with Transfusions Changing to Hydroxyurea (SWiTCH)
 - Transfusions and chelation still remain a better way to manage children with SCA, stroke and iron overload
 - Ware et al. Blood 2012;119(17):3925-3932

- Controlled Trial of Transfusions for Silent Cerebral Infarcts in Sickle Cell Anemia
 - Recurrent blood transfusions significantly reduces the incidence of the recurrence of cerebral infarcts in children with SCA (6% vs. 14%)

Debaun et al. NEJM 2014;371:699-710

- Hydroxyurea versus Chronic Transfusion for Maintenance of TCD Velocities in Children with SCA- TWiTCH trial
 - Hydroxyurea can substitute for chronic blood transfusions to maintain TCD velocities and help prevent strokes

Ware et al. The Lancet online Dec 6, 2015

Strategies for Management of SCD

Integrating new preventive care strategies

- Newborn screening and antibiotic prophylaxis
- Immunizations
- Stroke prevention
- Early recognition of end organ damage

Management of acute complications

- Painful episodes
- Acute chest syndrome
- Management of infections (hyposplenic state)
- Multiple organ failure

egies to modify disease outcomes

• Hydroxyurea therapy and other mechanistic approaches

Survival of children with sickle cell disease

Quinn, C. T. et al. Blood 2010;115:3447-3452

Copyright ©2010 American Society of Hematology. Copyright restrictions may apply.

SCD in USA: Improving Survival

Hydroxyurea for Sickle Cell Anemia Multiple Potential Mechanisms of Action

Ware, Blood 2010

Clinical Outcomes: BABY HUG compared to MSH

	BABY HUG ⁺				MSH		
	<u>HU</u>	<u>PL</u>	<u>p-value</u>	<u>HU</u>	<u>PL</u>	<u>p-value</u>	
Patients	96	97		152	147		
Pain	177	372	0.002	2.5/y	4 . 5/y	<0.001	
Acute Chest	8	27	0.017	25	51	<0.001	
Dactylitis	24	123	<0.001	—	—	—	
Hospitalized*	232	321	0.050	1.0/y	2 . 4/y	<0.001	
Transfusion [‡]	35	60	0.033	48	73	<0.001	

⁺data indicate no. of episodes

*in BABY HUG, all hospitalizations; in MSH, hospitalization for pain only

*‡*in BABY HUG, no. of transfusions; in MSH, no. of pts. receiving transfusion

Increased Survival with Hydroxyurea

Steinberg et al., JAMA 2003 9 years of follow-up 40% reduction in mortality

Voskaridou et al., Blood 2009 17-year single center trial 131 patients (34 HbSS) Significant reduction in mortality SS > S/β0-thal > S/β+-thal

Steinberg et al., Am J Hematol 2010 17.5 years of follow-up Significant decrease in mortality

Lobo et al. ASH abstract 2011

Harmful Effects of Hydroxyurea Therapy

· Evidence

- 3 RCTs (over 500 pts)
- Over 40 observational studies (> 3000 pts)
- Results
 - BM suppression high quality evidence, reversible
 - · Leg ulcers in adults- moderate quality evidence
 - · Leukemia- low evidence
 - · Reproductive effects- very low evidence

Case Presentation

7 year old male, SCA, seen at SCD clinic after 4

years in Canada.

- 2004 4 VOC admissions
- 2005 4 VOC admissions
- 2006 2 VOC admissions
- 2007 4 VOC admissions
- 2008 2 admissions in addition Jan to April 30 days missed from school

Stort of Hydroxyurea April 2008

Benefits for SCD

Fetal hemoglobin induction and altered red cell kinetics

Benefits for SCD

Lower neutrophil and reticulocyte counts from ribonuclease reductase inhibition and marrow cytotoxicity

TORON

SickKids

SickKids

Benefits for SCD

Decreased adhesiveness and improved rheology of circulating neutrophils and reticulocytes

SickKids

Benefits for SCD

Reduced hemolysis through improved RBC hydration, macrocytosis and reduced sickling of cells.

UNIVERSITY OF TORONTO

Clinical Response in this Case

- · April 2008 August 2012
- · No hospital admissions
- No VOCs requiring intensive management

Hydroxyurea Clinical Trials in Africa

- · NOHARM
- · NOHARM-MTD
- · SPIN
- · REACH
- · SPRING
- · SPRINT

Sickle Cell Disease Stroke Prevention in Nigeria Trial

Standard of Care

"In infants 9 months of age and older, children, and adolescents with SCA, offer treatment with hydroxyurea **regardless of clinical severity** to reduce SCD-related complications (e.g., pain, dactylitis, ACS, anemia)."

http://www.nhlbi.nih.gov/health-pro/guidelines/sigele-cell-disease-guidelines/[nhlbi.nih.gov]

JAMA 2014;312(10):1033-1048

U.S. Department of Health and Human Services National Institutes of Health

National Heart, Lung, and Blood Institute

Evidence-based recommendations for us of	Strength of	Quality of
hydroxyurea therapy	Recommendation	Evidence
Adults with SCA with ≥ 3 moderate to severe pain crisis during 12 months	Strong	High
Adults with SCA with sickle cell-associated pain that interferes with daily activities and QoL	Strong	Moderate
Adults with SCA who have severe symptomatic anemia that interferes with daily activities and QoL	Strong	Moderate
Infants \geq 9 mo age, children and adolescents with SCA to be	Strong and	High and
offered HU regardless of clinical severity to reduce complications	moderate	moderate
related to SCD		
Discontinue HU therapy in women who are pregnant or	Moderate	Low
breastfeeding		
Use established prescribing and monitoring protocol to ensure	Strong	High
proper use of HU and maximize benefits and safety		
In persons with SCD-SC or SCD-Sβ+-thalassemia who have	Moderate	Low
recurrent SCD-associated pain that interferes with daily activities		
and QoL, consult SCD expert for consideration of HU therapy		
In persons not demonstrating a clinical response to appropriated	Moderate	Very low
doses and duration of HU therapy, consult an SCD expert		

Hydroxyurea for Sickle Cell Disease

Treatment Information from the American Society of Hematology

Back to Case

- April 2008 to Aug 2012
 - No hospitalization for VOC
- Aug 2012
 - 2 admissions with VOC
- · Why?

The Big Questions

- · If HU therapy is
 - Clinically efficacious strong evidence
 - Minimally harmful- moderately strong evidence
 - Easily administered: once a day by oral route
 - Relatively affordable
- Why then
 - Do a significant number of patients refuse it?
 - Do some patients fail to adhere to therapy?

SickKids t should we be doing to promote reatment uptake?

Adherence

- · Caregivers
 - Show patients the favourable hematological profile while adhering to HU-Hb, MCV, WBC, Hb F and blood smears
 - Show loss of response when not adherent. Cumulative graphs of parameters has potent visual effect
 - Emphasize the desirable targets of HU response
 - Present data on impact of HU on survival
 - Social support crucial
 - Drug plans to ensure access

Adherence

Patients/Parents

- Keep records of events and hematological parameters
- Both parents should be involved with the child's HU therapy if possible
- Encourage electronic alarm systems as reminders for HU intake
- Non-adherence could be signs of social/emotional upheavals. Social workers input critical

How do we combat ignorance about HU therapy?

· Caregivers

- Educate, educate! Why not hydroxyurea?
- · NIH Guidelines are out
- · Canadian guidelines have been developed
- · Patients/Families
 - Educate using culturally-appropriate medium and language
 - · Combat the fears about cancer, infertility etc
- Providers/Health system
 - Make the cost-effectiveness and health economics case

Successful HU therapy saves money, improves patient QoL and survival

. No busine of Dustrials as she that a second star for 1111 we take she all she was so to the man

Neurological complications of SCD

- **Overt stroke**: 1.02/100 pt-years between
 - 2 and 5 yrs (Ohene-Frempong K, 1998)

Moya-Moya (progressive stenosis of distal ICA + abnormal network of collaterals) : 20% in children with strokes *(Moritani T, 2004)*

Silent cerebral infarcts

- ◆21.8% SS children aged 6 to 19 yrs (Pegelow CH, 2002)
- ◆ 37% SS children by their 14th birthday (Bernaudin F, 2011)

Related with cognitive impairments (DeBaun MR, 2012)

Stroke Incidence

Ohene-Frempong et al. **Blood** 1998;91:288-294

Stroke Prevention - STOP trial

- [•] Adams et al. NEJM 1998; 339: 5-11
 - Blood transfusions used to prevent recurrent stroke in SCD patients
 - High blood-flow velocity on transcranial Doppler (TCD) ultrasonography are correlated with stenosis on angiography
 - Study design:
 - Using TCD, identify SCD children at risk for stroke
 - · Randomize between standard care or transfusions to prevent a first stroke

Stroke Prevention

• Annual TCD starting from 2 years old (SS/S β °thal)

Velocity (cm/sec)	Interpretation	Follow up
< 170	Normal	TCD q 1 yr
170-200	Conditional	TCD q 4-6 months
> 200	Abnormal	TCD q 1month

If TCD is abnormal, packed red blood cells transfusions to maintain % Hb S < 30% are recommended.

STOP Trial

TABLE 2. Length of Follow-up and Numberof Primary Events.				
VARIABLE	Total (N=130)	Transfusion (N=63)	Standard Care (N=67)	
Follow-up (mo)				
Total	2550	1321	1229	
Median	21.1	22.2	18.3	
Mean ±SD	19.6 ± 6.5	21.0 ± 5.7	18.3 ± 7.0	
No. of strokes	12	$\begin{pmatrix} 1 \end{pmatrix}$	(11)	
Cerebral infarction	11	1	10	
Intracerebral hematoma	1	0		

Age: 2 to 16 years old Genotype: SS and Sβ°thal

SickKids Adams

Adams et al. NEJM 1998; 339: 5-11

STOP II trial

How long should transfusions be continued?

- Transfusion-halted group:
 - 2 strokes
 - 14 abnormal TCD
- Tranfusion continued group:
 - No event

TCD and Incidence of Stroke

Fullerton et al. Blood. 2004; 104:336-339

SickKids

Preventing Stroke

Secondary Stroke Prevention

- Alternative to chronic blood transfusions
- Better management of iron overload using phlebotomy
- **Primary Stroke Prevention**
 - Attractive alternative to transfusions or observation
 - Fewer complications, less cost, better compliance
 - Compelling option for low-resource countries

TWiTCH Study: Primary Endpoint

ITT per-protocol non-inferiority comparison (p=8.82 x 10-16) Additional post-hoc analysis for superiority (p=0.023)

Prevention of First & Recurrent Strokes

- Hydroxyurea vs Chronic Transfusion for Maintenance of TCD Velocities in Children with SCA- TWiTCH trial
 - Hydroxyurea can substitute for chronic blood transfusions to maintain TCD velocities and help prevent strokes
 - Ware et al. The Lancet 2016;387(10019):661-670
- Incidence rates of stroke recurrence
 - Meta-analysis of several studies
 - Regular transfusions 1.9 (Cl 0.1-2.9)/100 patient yrs
 - · Hydroxurea therapy 3.8 (CI 1.9-5.7)/100 patient yrs
 - No therapy 29.1 (Cl 19.2-38.9)/100 patient yrs

SickKids or patients who have had a 1st stroke, HU and chronic blood transfus

Evidence-Based Recommendations for Use of Transfusion	Strength of	Quality of
Therapy	Recommend	Evidence
	ation	
Adults and children with SCA , transfuse RBC to bring Hb to 10 g/dL prior	Strong	Moderate
to surgical procedure under GA		
In persons with SCD-SS and who already have Hb > 8.5 g/dL without	Strong	Low
transfusion, are receiving long-term HU therapy or who require		
high-risk surgery, consult with SCD expert for guidance as to the		
appropriate transfusion method.		
RBC units transfused in persons with SCD should include matching C, E	Moderate	Low
and Kell antigens		
In persons with SCA who do not receive long-term transfusions, avoid	Moderate	Low
transfusing to target Hb > 10 g/dL		
In children with SCA who receive long-term transfusion, the goal should	Moderate	Moderate
be to maintain pre-transfusion Hb S level < 30%		
Consult blood bank for workup of a possible delayed transfusion reaction	Strong	Moderate
in a patient with acute anemia, pain or jaundice 3 weeks after		
transfusion		
In persons on long-term transfusion therapy, perform serial assessments	Strong	Moderate
tor iron overload		
Administer Fe-chelation therapy (in consultation with a hematologist) to	Moderate	Moderate
persons with SCD and document transfusional iron overload		

Complication	Transfusion	Strength	Quality
	Method	of	of
		Recomme	Evidence
		ndation	
Symptomatic severe acute chest syndrome (O2 sats <	Exchange	Strong	Low
90% despite supplemental O2)			
Acute splenic sequestration with severe anemia	Simple	Strong	Low
In children and adults with acute stroke, initiate	Simple or	Moderate	Low
monthly transfusions	exchange		
Hepatic sequestration	Exchange or	Consensus	Panel
	simple		
Intrahepatic cholestasis	Exchange or	Consensus	Panel
	simple		
Multisystem organ failure	Exchange or	Consensus	Panel
	simple		
Aplastic crisis	Simple	Consensus	Panel
Symptomatic anemia	Simple	Consensus	Panel
Child with TCD reading > 200 cm/s	Exchange or	Strong	High
	simple	Strong	1 IIGII
Adults and children with previous clinically over stroke	Exchange or	Moderate	Low
	simple		

Summary

- Evidence-based therapies for SCD have emerged and many more underway
- Their proven efficacy need to be translated into effectiveness for patients
- Patients/families, provider and systems barriers need to be overcome to bridge the gap between efficacy and effectiveness
- Better outcomes for patients must be the ultimate goal

Thank You

Questions?

