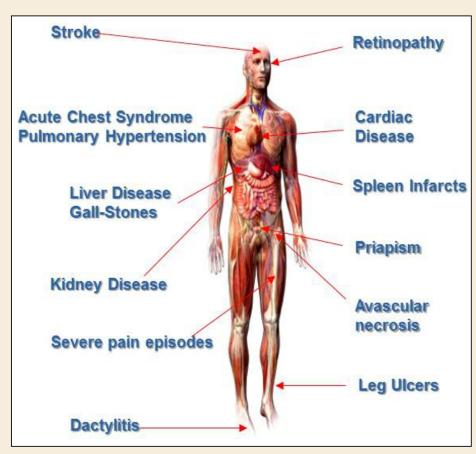

Stem Cell Transplantation to Cure Adults with Sickle Cell Disease



Disclosure Statement

I have no financial interest or other relationship with any manufacturer/s of any commercial product/s which may be discussed at this activity.

Biology of Sickle cell disease (SCD)

SCD-Related Complications

Vaso-occlusive Crises

- #1 cause for hospitalization and negatively impacts quality of life
- ~50% of SCD patients had ≥3/year acute visits for VOC1

Acute Chest Syndrome

#2 cause for hospitalization and can become rapidly fatal

Stroke

- Lifetime risk: 30% overt stroke, 44% silent infarctions2
- Transfusion therapy: 18% and 28% risk of overt or silent infarcts3

^{2.} WY Wong et al, Hematol Oncol Clin N Am 2005

Current Therapies for SCD

Hydroxyurea

Outcome	HU	Placebo	p-value
Pain crises	1.0/year	2.4/year	< 0.001
Acute Chest Syndrome	25%	51%	< 0.001
Transfusions	336 U	586 U	0.004

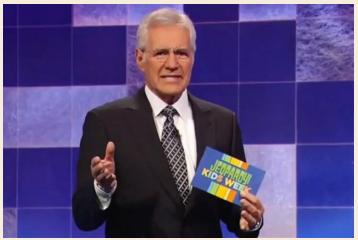
L-glutamine

Outcome	L-glutamine	Placebo	p- value
Pain crises	2 events	3 events	0.005
Hospital days	6.5 days	11 days	0.02
Acute chest syndrome	11.9%	26.9%	0.006

Transfusion

- Stroke prevention
- Acute complications:
 - · acute chest syndrome, intrahepatic cholestasis, splenic sequestration
- Preoperative management

University of Illinois
Hospital & Health Sciences System
Changing medicine. For good.


Charache S et al, NEJM 1995 Niihara et al., ASH Abstract #1318, 2014 NHLBI Expert Panel Report 2014

What Year did the following take place?

BONE-MARROW TRANSPLANTATION IN A PATIENT WITH SICKLE-CELL ANEMIA

F. Leonard Johnson, M.B.B.S.,
A. Thomas Look, M.D., Jon Gockerman, M.D.,
Mary R. Ruggiero, P.N.P.,
Luciano Dalla-Pozza, M.B.B.S.,
and Frederic T. Billings III, M.D.

First HSCT performed in an SCD patient in 1984

8 year old girl with Hb SS and AML

HLA-matched brother with sickle cell trait

Myeloablative conditioning regimen:

Cyclophosphamide (60mg/kg x 2 days) + TBI (11.5 Gy)

Complications:

- Acute and Chronic GVHD
- Pneumococcal bacteremia

Transplant Outcomes:

Myeloablative/intense regimens in Children

Center	N	Rejection	TRM	Cure Rate	Acute GVHD	Chronic GVHD
Belgium	50	10%	7%	83%	20%	20%
US/Europe	59	10%	6%	84%	15%	12%
French	87	7%	7%	86%	20%	14%
Belgium	50	8%	6%	86%	22%	20%
USA	43	2%	7%	91%	23%	13%
	289	8%	7%	86%	20%	16%

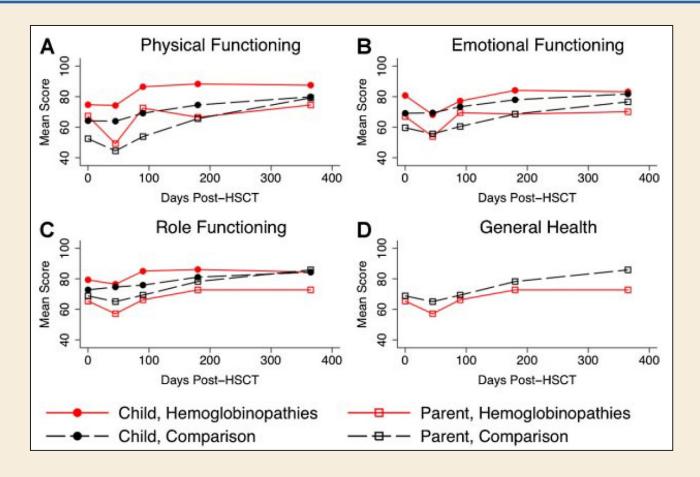
Vermylen et al. BMT 2007 Walters et al. BMT 2001 Bernaudin et al. Blood 2007 Dedeken et al. BJH 2014 King et al. AJH 2015

Transplant Outcomes: Improvements with Time

Variable	Before 1/2000 N = 43	After 1/2000 N = 44
Used ATG	27 (63%)	42 (96%)
Cord Blood	1 (2%)	11 (25%)
Deaths	6 (14%)	0 (0%)
Rejection	5 (12%)	2 (5%)
aGVHD (≥ Grade 2)	12 (28%)	5 (11%)
cGVHD	9 (21%)	2 (5%)

Transplant Outcomes: by Disease Status

Variable	Symptomatic N = 36	Asymptomatic N = 14
Age (median, range)	8.6 (1.7 – 23)	2 (0.9 – 15)
Deaths	2 (6%)	0 (0%)
Failed Engraftment/Rejection	4 (12%)	1 (7%)
aGVHD · Grade 1 or 2 · Grade 3 or 4	14 (39%) 1 (3%)	5 (36%) 0 (0%)
cGVHD · Limited · Extensive	5 (14%) 3 (8%)	2 (14%) 0 (0%)



Transplant Outcomes: Long-Term Improvements

Organ System	Outcomes Post-transplant
Brain/CNS	Stable/Improved MRI/MRANo episodes of stroke
Pulmonary	 Improvement in restrictive pattern 25% of evaluated patients No episodes of acute chest syndrome
Liver	· Resolution of liver changes in 3 of 3 pts

Transplant Outcomes: Improved Quality of life

When to consider stem cell transplantation

HLA-Matched

Standard-of-care

- Stroke or silent stroke with cognitive impairment
- Pain crises (≥2/year)
- Acute chest syndrome (≥2/lifetime)
- Recurrent priapisms
- Pulmonary hypertension
- Osteonecrosis (AVN) of joints
- Kidney damage
- Multiple red blood cell antibodies

Transplant for SCD Global Experience (1986-2013)

1000 SCD recipients with HLA-matched sibling donor

- 106 Centers/23 Countries (CIBMTR, EBMT, Eurocord databases)
- Median age 9 years old (range: 1 54 years)
- 87% received a myeloablative regimen

At 5 years:

- 91% cure rate
- 15% had acute GVHD
- 14% had chronic GVHD

Transplant for SCD Global Experience (1986-2013)

	Children (n = 846, median age 8)	Adults (n = 154, median age 19)
Myeloablative regimen	90%	73%
Bone marrow cells	86%	72%
GVHD-free survival	86%	77%
Overall survival	95%	81%

For every 1 year increase in age:

- 4% increased risk for acute GVHD
- 9% increased risk for graft failure
- 10% increased risk for death

Transplant for SCD: Experience in adults

Reduced Intensity Conditioning:

Fludarabine 30mg/m2 x 4 days

Melphalan 140mg/m2 x 1 day

ATG 30mg/kg x 4 days

1) Hb SS, Age 40, Frequent VOC, ESRD

Deceased at Day +335 from Lung GVHD complications

2) Hb SC, Age 56, Frequent VOC, AVN, Retinopathy

Deceased at Day +147 from GI GVHD complications

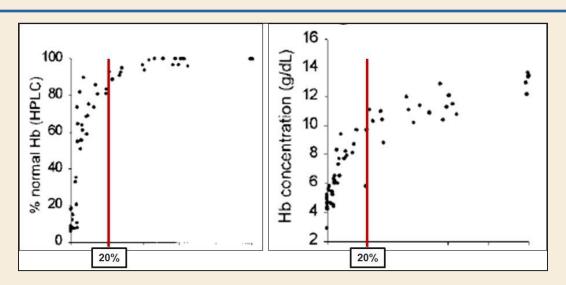
Mixed chimerism

Goal of Stem Cell Transplant

- Therapeutic efficacy → reduce SCD complications
- Minimize toxicity → reduce GVHD & mortality

Is there a **chimerism** % that can:

- 1) Avoid toxicity of intense regimens
- 2) Reverse SCD phenotype



Mixed chimerism

Mouse Model:

Transplanted varying

Sickle: Normal marrow

SCD Patients:

Efficacy: No SCD-related

complications

Toxicity: No GVHD

Donor	Chimerism	Hb (g/dL)	HbS %
AA	11%	11.3	7
AA	67%	14.2	0
AA	74%	11.3	0
AS	60%	11.3	37
AS	25%	11.8	36

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

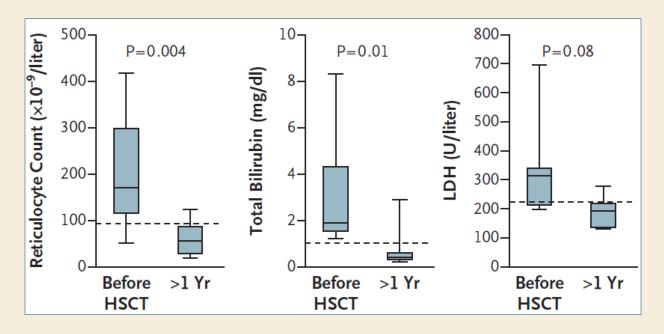
DECEMBER 10, 2009

VOL. 361 NO. 24

Allogeneic Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease

Matthew M. Hsieh, M.D., Elizabeth M. Kang, M.D., Courtney D. Fitzhugh, M.D., M. Beth Link, R.N., Charles D. Bolan, M.D., Roger Kurlander, M.D., Richard W. Childs, M.D., Griffin P. Rodgers, M.D., Jonathan D. Powell, M.D., Ph.D., and John F. Tisdale, M.D.

- SCD Adults (median age 26, range 16 45 y.o.)
- Transplant Regimen:
 - Alemtuzumab/TBI 300 cGy for conditioning
 - · Sirolimus for GVHD prophylaxis/graft rejection
- 90% engraftment
- No mortality
- No GVHD



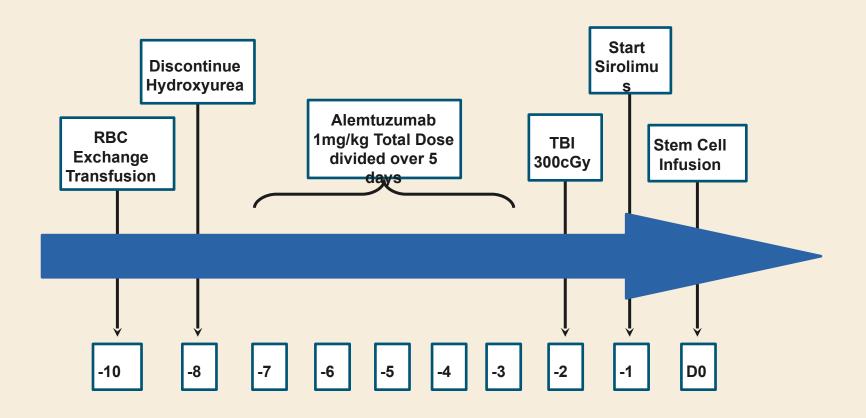
Transplant for SCD: NIH Experience

Hemoglobin:

	Pre-HSCT	Post-HSCT
Female	8.8 ± 0.3	12.6 ± 0.6
Male	9.3 ± 0.5	12.7 ± 1.1

Hemolytic Markers:

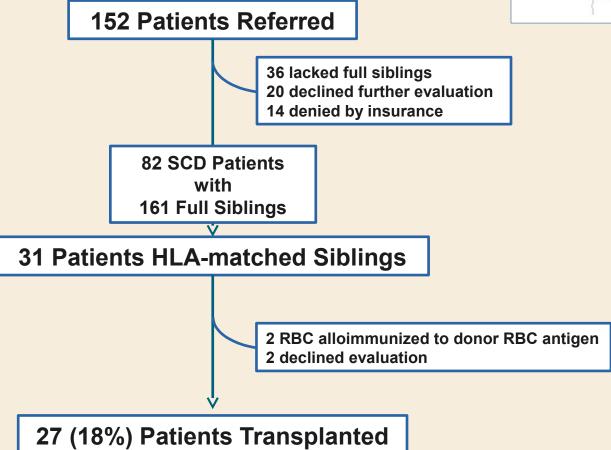
Chemotherapy-Free transplant Regimen


Alemtuzumab

- Antibody targeting CD52
- Depletes T and B immune cells
- Does not affect stem cells
- Major risk is reactivation of a virus, CMV

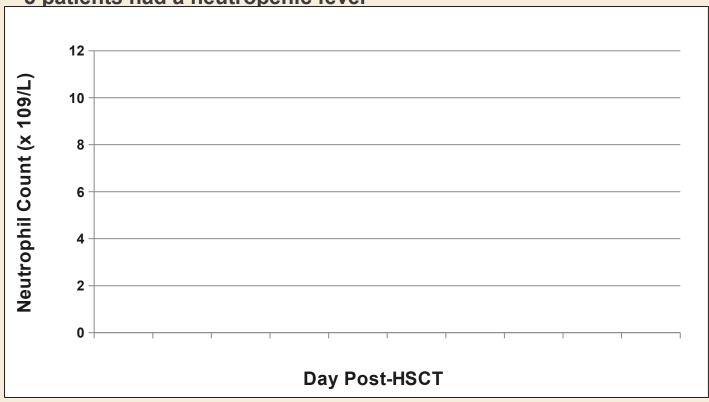
Sirolimus

- Inhibits T-cell activation and proliferation
- Mouse transplant model: sirolimus vs. cyclosporine
 - Only sirolimus treated mice showed long-term engraftment


Chemotherapy-Free Transplant regimen

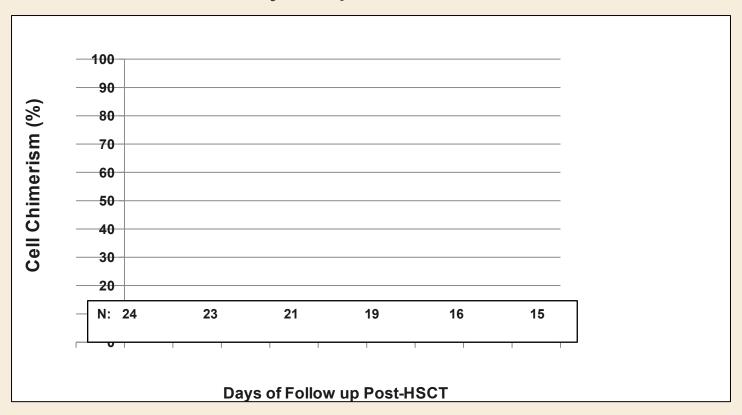
Screening process

Time Period: 9/2011 - 12/2017

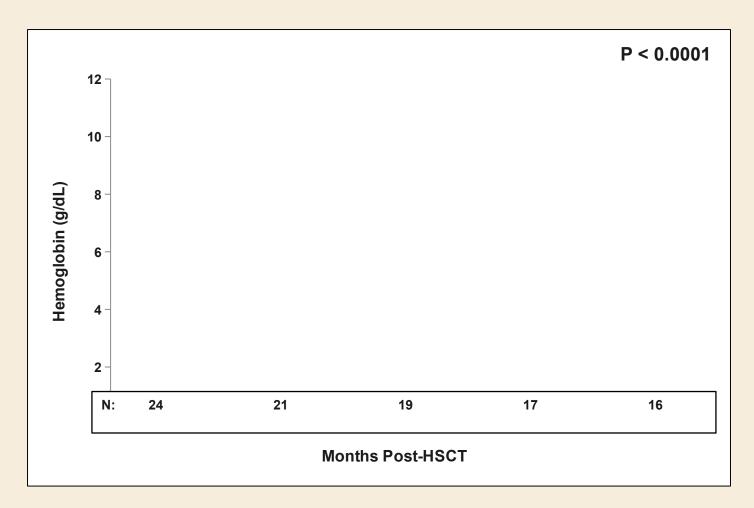

Patient & TRANSPLANT Characteristics

Variable	Result
Age (years)	33 (17 – 55)
Gender (Female: Male)	13 : 14
SCD Genotype: Hb SS Hb SC Hb Sβ+-thalassemia	24 2 1
RBC Alloimmunized	6
ABO Major Mismatched	3
Donor β-Hemoglobin Status: Hb AA Hb AS	20 7
CD34+ Cell Dose (x106 cells/kg)	8.1 (5.1 – 15.3)
Duration of Follow-Up (months)	49 (2 – 79)

Neutrophil Count

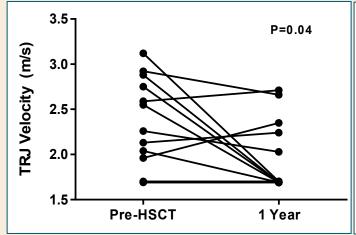

21/27 patients developed ANC < 500

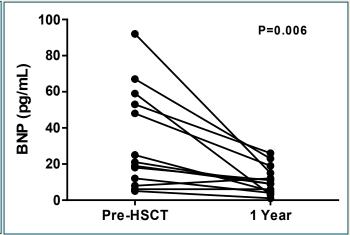
- Median duration 5 days (range: 1-14)
- 5 patients had a neutropenic fever

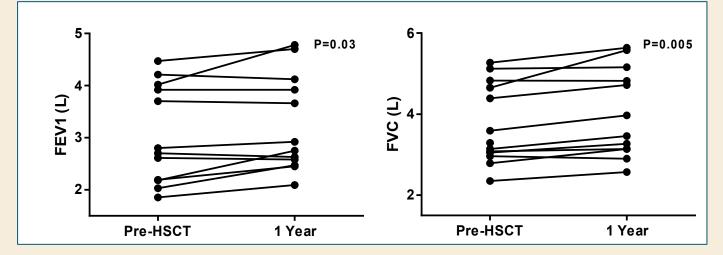


Engraftment

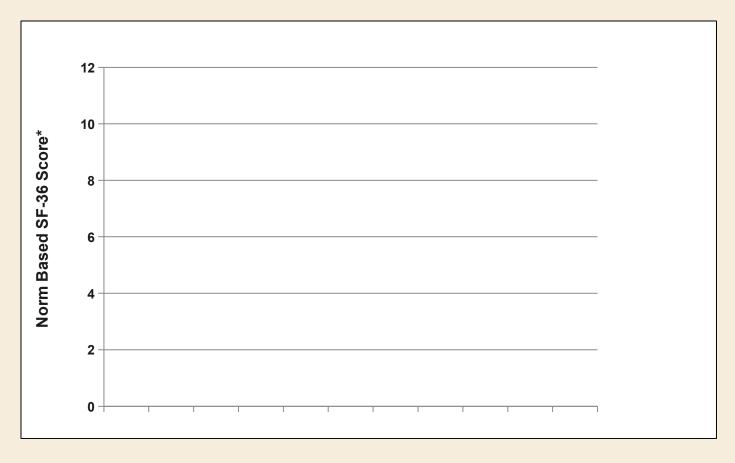
- All 27 patients initially engrafted
- 3 (11%) subsequently rejected (1 noncompliant, 2 intolerant of sirolimus)
- Chimerism in 24 non-rejected patients:




hemoglobin concentration


cardiopulmonary Improvements

Heart Function:



Lung Function:

SF-36 Health Survey

* 50 is the general US population norm

TOXICITY

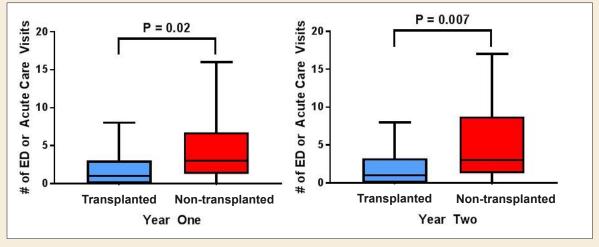
• **GVHD**: 0%

• **Rejection**: 3/27 (11%)

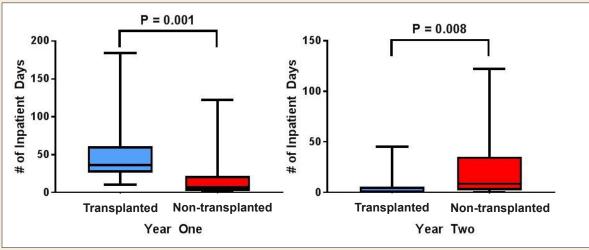
• Sirolimus: Lung toxicity 2/27 (7%)

Increased urine protein 3/27 (11%)

Low blood counts 1/27 (4%)


Mouth inflammation 4/26 (15%)

Ankle/knee pain 10/26 (38%)

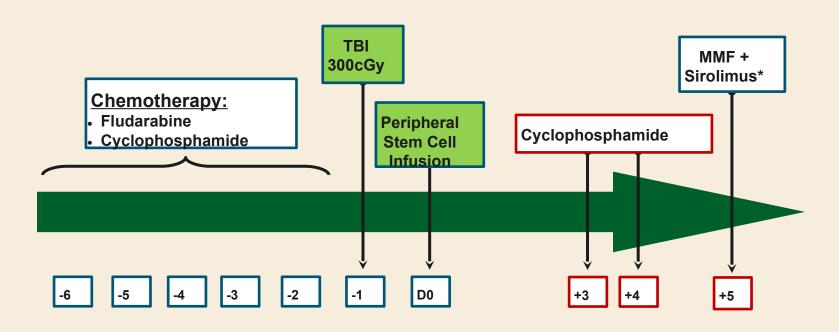


Post-Transplant Health Care Utilization

Emergency Care Use

Inpatient Hospital Days

Transplant for SCD: Chemotherapy-free REgimen


Center	N	Age Range	Rejection	Cure Rate	Acute GVHD	Chronic GVHD
NIH	30	16 – 65	13%	87%	0%	0%
UIC	27	17 – 55	11%	89%	0%	0%
Calgary	8	< 18	0%	100%	0%	0%
			11%	89%	0%	0%

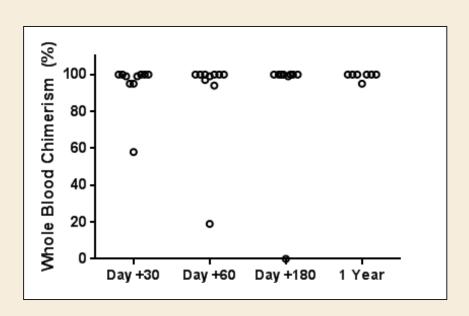
Transplant for SCD: Current Challenges

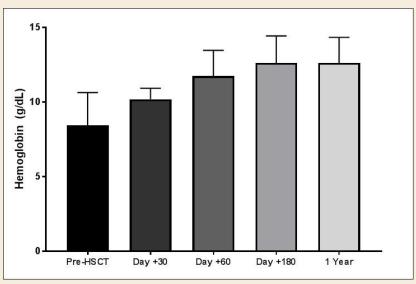
- 1/3 of SCD patients meet eligibility criteria
 - 14% have an HLA-matched sibling donor
- Potentially all SCD patients should have a haploidentical related donor
 - Parents & Children
 - Siblings (including half-siblings)
 - Aunts/Uncles, Cousins

* MMF until day+35 Sirolimus for 1 year

PMID: 29656137

Screening process


Time Period: 1/2016 – 1/2018 50 SCD Patients Referred 10 Denied by insurance 40 SCD Patients & 73 Relatives Screened ~60% had 4 No haploidentical donor identified available 12 Donor specific antibodies (DSA) (MFI > 2000) haplo-donor 24 Eligible SCD Patient-Haploidentical Pairs 14 Deferred or declined transplantation


10 (20%) Patients Transplanted

Variable	Result
Age (years)	28 (20 – 37)
Gender (Female: Male)	2:8
SCD Genotype: Hb SS Hb Sβ+-thal	9
Donor β-Hemoglobin Status: Hb AA Hb AS	3 7
Donor Source: Parent Sibling Child	5 4 1
Follow-Up (months)	12 (4 – 32)

Stable engraftment in 9/10 (90%) of SCD patients

Transplant-related toxicity

- 2 patients with small brain hemorrhages when platelets low
 - Both had history of strokes
 - Both fully recovered and are working full time
- 2 had acute GVHD
 - 1 noncompliant with sirolimus → acute on chronic GVHD
 - 1 acute Grade 2 gut GVHD
 - Resolved with prednisone therapy

Summary

- Stem cell transplantation should be considered for SCD patients w/ complications + HLA-matched sibling
 - >85% cure rate
 - No GVHD observed with alemtuzumab/TBI regimen
- Special circumstances for Haploidentical HSCT in SCD
 - Recent regimens demonstrate >80% cure
 - Chemotherapy → more toxicity
 - GVHD risk

Acknowledgements

8 West/BMT Nursing Staff

Sickle Cell Team

Victor Gordeuk, MD
Joseph DeSimone, PhD
Robert Molokie, MD
Lewis Hsu, MD, PhD
Michel Gowhari, DO
Shivi Jain, MD
Angela Rivers, MD, PhD
Lani Krauz, BSN
Taif Hassan, MD
Shonda King, MSW
Darcell Dowell, MSN
Bernadette Edom, MSN

Blood & Marrow Transplant Team

Damiano Rondelli, MD Nadim Mahmud, MD, PhD Sally Campbell-Lee, MD Matthew Koshy, MD Karen Sweiss, PharmD Pritesh Patel, MD David Peace, MD John Quigley, MD Irum Khan, MD Sheila Davies, RN Christina Havey, RN Tania Perez, BS Shanna Morton, BS Youngmin Park, BS Grace Irene, BS Ana Gordan, MS

